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1 Distance covariance and friends
• General strategy for measuring dependency between X and Y :

1. Define a distance (semi-)metric between distributions
2. Measure distance between PXY and PXPY

Then it naturally follows that distance = 0 ⇐⇒ X ⊥ Y .

• Mutual information is dependency measure induced by KL divergence.

• Energy distance is a distance between distributions, induced by a distance metric of random variables.

ED(P,Q) = E[−d(A,A′)]− 2E[−d(A,B)] + E[−d(B,B′)] (1)

where expectation is taken over A,A′ ∼ P and B,B′ ∼ Q.
We would like ED to be positive definite, i.e., ED ≥ 0 and ED = 0 ⇐⇒ P = Q. However, not all
choice of d induces positive definite ED. Those nice behaving d are said to have “strong negative type”,
which includes the simple Euclidean distance d(A,B) = ∥A−B∥ used in the original paper.

• Distance covariance is the dependency measure induced by energy distance.

dCov(X,Y ) = ED(PXY , PXPY ) (2)
= E[d(X,X ′)d(Y, Y ′)]− 2EX,Y [EX′d(X,X ′)EY ′d(Y, Y ′)] + E[d(X,X ′)]E[d(Y, Y ′)] (3)

• Maximum mean discrepancy (MMD) is another distance between distributions, induced by a Mercer
kernel k.

MMD(P,Q) = E[k(A,A′)]− 2E[k(A,B)] + E[k(B,B′)] (4)
= ∥µP − µQ∥H (5)

where µP =
∫
k(·, x) dP (x) is the mean embedding of P in H.

MMD is positive definite by construction.

• Hilbert-Schmidt independence criterion (HSIC) is the dependency measure induced by MMD.

HSIC(X,Y ) = MMD(PXY , PXPY ) (6)
= E[k(X,X ′)k(Y, Y ′)]− 2EX,Y [EX′k(X,X ′)EY ′k(Y, Y ′)] + E[k(X,X ′)]E[k(Y, Y ′)] (7)

• The overall picture:
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• Distance → kernel: Any semi-metric d induces a kernel via

k(x, y) = d(x, z) + d(z, y)− d(x, y) (8)

through an arbitrary fixed point z. Also,

k is positive definite kernel ⇐⇒ d is “negative type” (9)
k is characteristic (k = 0 ⇐⇒ x = y) ⇐⇒ d is “strong negative type” (10)

• Kernel → distance: Any non-degenerate kernel k induces a semi-metric via

d(x, y) = k(x, x)− 2k(x, y) + k(y, y) (11)

Similar result hold.

• The above equivalence between kernel and distance hold for population statistics. However, more
(translation invariance and bijectivity) has to be defined for sample equivalence.
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