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1 Distance covariance and friends

e General strategy for measuring dependency between X and Y:

1. Define a distance (semi-)metric between distributions

2. Measure distance between Pxy and Px Py
Then it naturally follows that distance =0 <— X 1 Y.
e Mutual information is dependency measure induced by KL divergence.

e Energy distance is a distance between distributions, induced by a distance metric of random variables.
ED(P,Q) = E[-d(A, A")] - 2E[-d(A, B)] + E[-d(B, B')] (1)

where expectation is taken over A, A’ ~ P and B, B’ ~ Q.

We would like ED to be positive definite, i.e., ED > 0 and ED = 0 <= P = . However, not all
choice of d induces positive definite ED. Those nice behaving d are said to have “strong negative type”,
which includes the simple Euclidean distance d(A, B) = ||A — B|| used in the original paper.

e Distance covariance is the dependency measure induced by energy distance.

dCOV()(7 Y) = ED(ny, PXpy) (2)
= E[d(X, X")d(Y,Y")] - 2Ex y [Ex/d(X, X") Ey-d(Y,Y")] + E[d(X, X")|E[d(Y,Y")] (3)

o Maximum mean discrepancy (MMD) is another distance between distributions, induced by a Mercer
kernel k.

MMD(P, Q) = E[k(A, A')] — 2E[k(A, B)] + E[k(B, B')] (4)
= llur — pelly (5)

where pp = [ k(-,2) dP(z) is the mean embedding of P in H.
MMD is positive definite by construction.

 Hilbert-Schmidt independence criterion (HSIC) is the dependency measure induced by MMD.

HSIC(X,Y) = MMD(Pxy, Px Py) (6)
=E[k(X, Xk, Y")] - 2Ex,y [Ex k(X, X )Ey k(Y,Y")] + E[k(X, X")E[k(Y,Y")] (7)

e The overall picture:



function of two r.v.s distance of two distributions dependency of two r.v.s

KL divergence mutual information
distance metric energy distance distance covariance
Mercer kernel MMD HSIC

Distance — kernel: Any semi-metric d induces a kernel via
k(z,y) = d(z,z) + d(z,y) — d(z,y) (8)
through an arbitrary fixed point z. Also,
k is positive definite kernel <= d is “negative type” (9)

k is characteristic (k =0 < z =y) <= d is “strong negative type” (10)

Kernel — distance: Any non-degenerate kernel k induces a semi-metric via
d(z,y) = k(z,z) — 2k(z,y) + k(y,y) (11)
Similar result hold.

The above equivalence between kernel and distance hold for population statistics. However, more
(translation invariance and bijectivity) has to be defined for sample equivalence.
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